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Abstract

It is well known that the square root AL/K of the codifferent in a weakly ramified

G-Galois extension of p-adic fields is a free OK [G]-module. We will also assume that L/K

is totally ramified. Then G is elementary p-abelian. The case K = Qp is nice and simple:

here G is at most cyclic of order p, L is “essentially” the degree p subfield of Q(ζp2), and

Erez gave a generator of AL/K in terms of ζp2 . More general constructions were given by

Pickett-Vinatier and by the author. They are still very cyclotomic in spirit, using Kummer

extensions. New work of Pickett-Thomas involves formal groups. So it is tempting to look

around for a construction that combines both aspects: globality, and the use of algebraic

groups. We try to do this in a very modest case: K is unramified quadratic over Qp, and

G is bi-cyclic of order p2 (which is the largest possible for such K). We pick the elliptic

curve E : y2 = x3 + x defined over Q, and we restrict to p ≡ 3 (mod 4), so K = Q(i).

Note that E has complex multiplication with Z[i]. We do find a local generator for AL/K
with global origin: it comes from division values of an appropriate elliptic function on E.

It is an important feature of our approach that the extension L/K is the completion of an

abelian extension of Q(i) which has the same Galois group G and is unramified outside p.

So far we haven’t succeeded in finding a global generator. Indeed, the generators which we

exhibit fail to generate the root of the global codifferent at certain primes (of course finite

in number), and we do not yet understand the nature and origin of those bad primes.

0 The starting point

Let p 6= 2 be prime, K be an extension of Qp, and L/K a G-Galois extension. Assume that

L/K is weakly ramified (that is, G2 = {1}). Assume further (for simplicity) that L/K is totally

ramified. Then

G ∼=
G0

G2

∼=
G

G2

is elementary abelian.

Let A = AL/K = D−1/2L/K be the square root of the inverse different. It is well known that A is

free over OK [G]. Any x ∈ A with vL(x) = 1 − [L : K] is a generator. If K/Qp is unramified

then there exists a maximal extension L/K with all the above quantities, and by local class

field theory we have

G ∼=
1 + pOK

1 + p2OK

∼=
(
OK

p
,+

)
via 1 + pu ←[ u.
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Given K, the extension L is not quite unique, but writing Knr for the maximal unramified

extension of K, we at least have that LKnr/Knr is unique.

For K = Qp, L is the degree p subfield of M = Qp(ζp2). In this situation, Erez showed

that AL/K is generated by

xL =
1

p

(
TrM/L(ζp2) + 1

)
.

In the case that K/Qp is unramified and L′/K is a cyclic subextension of L/K, Pickett gave a

generator x = xL′ of AL′/K that is self-dual: TrL′/K(xσxτ ) = δσ,τ .

Here is a very brief overview of relevant results:

Author(s) Allow K/Qp ramified Allow L′/K noncyclic Give self-dual basis

Pickett — — 3

G. 3 — 3

G. — 3 —

Pickett-Thomas 3 3 —

1 The goal and the setting

We would like to combine two aspects: globality, and the use of algebraic groups. Choose

K = Qp(i), p ≡ 3 (mod 4), E : y2 = x3 + x. This elliptic curve has complex multiplication by

Z[i]: [
i
]
x = −x[

i
]
y = iy.

Construct L/K weakly ramified bicyclic as follows. Adopt the following global notation:

K̃(p2)

L̃

K̃(p)

p2

Q(i) = K̃
(p2−1)/4

Here K̃(p), K̃(p2) denote the ray class fields of conductors p, p2 respectively, and L̃/K̃ is totally

and weakly ramified. The corresponding local setup is obtained by completing these objects at

p, giving

M

L

K1

K
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We have

E(C) = C
/

Λ → {(x, y) | y2 = x3 + x}
z 7→ (℘(z), ℘′(z)) = (X(z), Y (z)), say.

Now we have the deep fact that K̃(p2) = K(X2(β)) with β a primitive p2-division point on

E(C). We can describe the Galois action:

Gal(K̃(p2)/K̃) =
(
Z[i]
/
p2
)/

µ4

σu ←[ u,

and σu (X2(β)) = X2(uβ).

Idea: In order to find a generator of AL/K , try

x =
1

p

(
TrM/L(D(β)) + c

)
,

for some elliptic function D in Q(X2) and c some integer chosen to make the valuation of x

correct.

We cannot let D be X2 itself: X2(β) is not p-integral. We cannot take D = X−2 either:

X−2(β) is p-integral and congruent to 0 modulo pL, and we can take c = 0, but then we need

TrL/K(x) ∼ p, and we find that TrL/K(x) ∼ p2 .

We take D(z) =
X2(z) + 1

X2(z)− 1
.

2 A distribution relation for D

Proposition 1. For all z ∈ C and all m ∈ Z such that m ≡ 3 (mod 4), we have∑
α∈E[m]

D(z + α) = −mD(mz).

The proof is omitted here.

We now let y = D(β) for a chosen β ∈ E[p2]− E[p], so β is a primitive p2-division point.

Lemma 2. y ∈ OM [1/2] and y ≡ 1 (mod pM).

Sketch Proof. q - 2p, so E is still an elliptic curve modulo q. The zeroes of X2(z) − 1 are in

E[4]. Hence X2(β)− 1 is not zero. Moreover

y =
1 +X−2(β)

1−X−2(β)
,

and X−2(β) ∈ pM .
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3 A trace formula, and the main result

Recall β ∈ E[p2]− E[p] and y = D(β).

Proposition 3. TrM/K(y) = p
p+ 1

4
.

Proof.

TrM/K1(y) =
∑

u∈OK/p

D(β)σ1+pu

=
∑

u∈OK/p

D((1 + pu)β)

=
∑

u∈OK/p

D(β + puβ)

=
∑
α∈E[p]

D(β + α)

= −pD(pβ) by Prop. 1.

Let γ = pβ. We still need to prove that:

TrK1/KD(γ) = −p+ 1

4
.

We have: ∑
α∈E[p]

D(0 + α) = −pD(p · 0) = −p,

and also ∑
α∈E[p]

D(0 + α) = D(0) +
∑
α∈E[p]
α 6=0

D(α)

= 1 + 4TrK1/KD(γ).

Rearranging this gives the result.

Now let x0 = TrM/L(y) +
p+ 1

4
and x =

1

p
x0.

Theorem 4.

1) x0 ∈ pL;

2) TrL/K(x0) ∼ p;

3) (Main result) The element x generates AL/K over OK [G].

Proof. Part (1): We have y ≡ 1 (mod pM), and TrM/L(y) ≡ p2 − 1

4
(mod pL), so

x0 ≡
p2 − 1

4
+
p+ 1

4
≡ 0 (mod pL).
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Part (2): We calculate

TrL/K(x0) = TrM/K(y) + p2
p+ 1

4

= p
p+ 1

4
+ p2

p+ 1

4
by Prop. 3

= p
(p+ 1)2

4
.

Part (3): We know x ∈ A since vL(x0) ≥ 1, and vL(x) ≥ 1 − [L : K]. We want equality

to hold. If not, we would have vL(x0) ≥ 2, but then we may apply the usual formula that

describes, in terms of the different, how the valuation behaves under taking the trace, and we

get that TrL/K(x0) would be divisible by p2, contradicting part (2).

4 What can we say besides Theorem 4?

The element x comes from a global construction. It seems natural to ask the following questions.

1) Does x generate AL̃/K̃ globally (maybe outside 2)?

2) Is the generator x self-dual (i.e. TrL/K(xσxτ ) = δσ,τ)?

3) What do we get by numerical verification?

As of now, we have the following answers to offer.

Concerning 3): We did the primes 3, 7, 11, 19, 23, and everything checks out as it should,

which is reassuring.

Concerning 1) and 2): In general, the answer is No. Let us look at the trace matrix

T = (Tr(xστ τ ))σ,τ∈G (recall that we can identify G with Fp2 ∼= Z[i]
/
p). Self-duality would

mean that T = I, x being a generator over q - 2p would mean that det(T ) is a unit at q.

For p = 3 we get:

T =


4 2 2 2 1 1 2 1 1
...

. . .
...

...
. . .

...
...

. . .
...


where the column indices correspond to the enumeration 0, 1, 2, i, 1 + i, 2 + i, 2i, 1 + 2i, 2 + 2i of

the field F9. We find in this case that det(T ) = 212, so indeed x is a global generator outside 2.

However, for p = 7, det(T ) contains the prime factors 2, 13, 67, 2267. We have no arithmetic

explanation for these “bad” primes. The next step would be a systematic search for an elliptic

function that works better than D. For this, presumably an in-depth study of elliptic resolvents

is necessary.
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